create a scree plot for PCA analysis
plotScreeEns(pcaout, null.color = "red", null.significance = 0.05, ...)
a list of results output from pcaEns()
color of the line of the null hypothesis results
Significance level to of the null to plot (default = 0.05).
Arguments passed on to plotTimeseriesEnsRibbons
X
A LiPD variable list to plot, including values, units, names, and more
Y
A LiPD variable list to plot, including values, units, names, and more
probs
a vector of probabilities to plot as ribbons. It will create bands as ribbons of quantiles moving inward. If there's an odd number, it plots the middle quantile as a line.
color.low
Color of the outermost band; the extreme quantiles of the distribution
color.high
Color of the innermost band; the central quantiles of the distribution
color.line
Line color (following ggplot rules)
color.vector
A vector (of length equal to the number of bands) that specifies the colors for the ribbons from the outermost band in (default = NA). Colors specified as string according to ggplot2 conventions. If present, this overrules color.high and color.low
line.width
Width of the line
n.bins
number bins over which to calculate intervals. Used to calculate x.bin if not provided.
x.bin
vector of bin edges over which to bin.
y.bin
vector of bin edges over which to bin.
alp
alpha (transparency) parameter for the ribbons
add.to.plot
A ggplot object to add this plot to. Default is ggplot() .
export.quantiles
If TRUE, return the plotted quantiles rather than the plot
a ggplot plot
Other pca:
ar1Surrogates()
,
createSyntheticTimeseries()
,
pcaEns()
,
plotPcaEns()
Other plot:
plotChron()
,
plotChronEns()
,
plotChronEnsDiff()
,
plotCorEns()
,
plotHistEns()
,
plotLine()
,
plotModelDistributions()
,
plotPcaEns()
,
plotPvalsEnsFdr()
,
plotRegressEns()
,
plotScatterEns()
,
plotSpectraEns()
,
plotSpectrum()
,
plotSummary()
,
plotSummaryTs()
,
plotTimeseriesEnsLines()
,
plotTimeseriesEnsRibbons()
,
plotTimeseriesStack()
,
plotTrendLinesEns()