Transforms each column of data matrix X to normality using the inverse Rosenblatt transform. Tolerant to missing values (NA entries).
gaussianize(X, jitter = FALSE)
gaussianized data matrix, Xn
Emile-Geay, J., and M. Tingley (2016), Inferring climate variability from nonlinear proxies: application to palaeo-enso studies, Climate of the Past, 12 (1), 31–50, doi:10.5194/cp-12-31-2016.
Van Albada, S.J., Robinson P.A. (2006), Transformation of arbitrary distributions to the normal distribution with application to EEG test-retest reliability. J Neurosci Meth, doi:10.1016/j.jneumeth.2006.11.004
Other utility:
askUser()
,
concatEnsembleTimeseries()
,
convertAD2BP()
,
convertBP2AD()
,
createChronMeasInputDf()
,
getLastVarString()
,
getOs()
,
heuristicUnits()
,
loadRemote()
,
pullInstance()
,
stringifyVariables()
,
surrogateDataFun()