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PROJECT SUMMARY
Collaborative Research:

GeoChronR – open-source tools for the analysis, visualization and integration of
time-uncertain geoscientific data

Overview
Paleogeoscientists use natural archives to understand how climate, ecosystems, and environments varied

prior to human monitoring. Accurately determining the age of samples is critical to this work, allowing
scientists to pinpoint phase relationships between Earth systems and their forcings. Unfortunately, the lack
of an accepted framework to represent and treat age uncertainties limits the broader applicability of such
records. Over the past twenty years, the community’s approach to modeling ages in a depth sequence has
become increasing sophisticated, most recently resulting in Bayesian- and Monte Carlo-based approaches
that more realistically characterize the full range of uncertainty and provide more robust estimates of age
through a sequence. Because they are ensemble-based, these techniques allow for a quantitative evaluation
of how age uncertainties affect quantities derived from such records. However, most domain scientists only
use these tools to develop single, best estimates of age, and only qualitatively assess the influence of time
uncertainties on their paleoenvironmental records. The proposed work will develop an integrated frame-
work that allows scientists to generate state-of-the-art age models for their records, create time-uncertain
ensembles of their data, analyze those ensembles with a number of commonly-used techniques, and visu-
alize their results in an intuitive way. The code will be developed as a package in the open-source and
community-supported R platform, facilitating broad dissemination.

Geochronologic data are rarely archived, and these software advances require a standard way of archiv-
ing time-uncertain data. We will use a universal, preliminary structured format that achieves this goal. As
a proof of concept, the format will be applied to a data rescue effort with the World Data Center for Pale-
oclimatology, in a focused effort to recover primary geochronologic information for marine and terrestrial
records of the Holocene, synthesizing and improving the archive resulting from the NSF Earth System His-
tory (ESH) Holocene initiative. These unified software and data standards will enable improved uncertainty
quantification on the analysis of single records (the bread and butter of paleogeoscientists), multiproxy syn-
theses, and the integration of paleo data with dynamical models.

Intellectual Merit
Treating age models as an ensemble of many, equally likely, age-depth relationships, will enable paleo-

geoscientists to easily quantify uncertainties in their records of past climate, ecosystems or landscapes, and
in quantities derived from them – without requiring special knowledge in data science. This will allow for:

1. More robust integration of time-uncertain records with precisely-dated layer-counted records (espe-
cially tree-ring chronologies) that are widely used to inform our understanding of the climate of the
past 2,000 years (the Common Era);

2. Better understanding of abrupt climate changes (duration, spatial expression, synchronicity);
3. Improved integration of Earth system models with time-uncertain observations, allowing for a more

rigorous tests of scientific hypotheses pertaining to model simulations of Earth’s past.

Broader Impacts
This project will create a powerful and ergonomic framework that will allow all paleogeoscientists to

take full advantage of recent improvements in age-uncertainty quantification, and we will distribute these
algorithms on the open-source and community-supported R platform. At present, no such tool exists, so the
vast majority of paleogeoscientists leave this potential for insight untouched. Two workshops will ensure
broad community feedback and the training of early career scientists in these new tools. This grant will also
support two early-career scientists, a graduate student and up to four student interns.



PROJECT DESCRIPTION

1 Objectives and Community Need
Quantifying chronological uncertainties is fundamental to the paleogeosciences. Without robust error de-
termination, one cannot properly assess the extent to which past changes occurred simultaneously across
regions or the duration of abrupt events, both of which limit our capacity to apply paleoscientific under-
standing to modern and future processes. The paleogeosciences community recognizes the need for a better
infrastructure to both characterize uncertainty and to explicitly evaluate how age uncertainty impacts the in-
terpretation of records of past climate, ecology or landscapes [Noren et al., 2013]. In response to this need,
the paleogeoscience community is making rapid advances toward improving geochronological accuracy by:

1. Improving analytical techniques that enable more precise age determination on smaller and context-
specific samples [e.g., Brown et al., 1989; Eglinton et al., 1996; Eggins et al., 2005; Santos et al.,
2010];

2. Refining our understanding of how past changes in the Earth system impact the age accuracy, for
example: improvements to the radiocarbon calibration curve [Stuiver et al., 1991, 1998] and advances
in our understanding of spatial variability in cosmogenic production rates used in exposure dating
[Balco et al., 2009; Masarik and Beer, 2009];

3. Dramatic improvement in the level of sophistication and realism in age-depth models used to estimate
the ages of sequences between dated samples [e.g., Heegaard et al., 2005; Ramsey, 2009; Blaauw,
2010; Blaauw and Christen, 2011].

These advances allow for increasingly accurate ages and a more robust understanding of their uncertainties.
Indeed, efforts in improving the accuracy and precision of geochronologic techniques are critical, and an area
of community focus, as demonstrated by the NSF-funded EARTHTIME initiative1. However, the dynamic
nature of geochronology makes intercomparison of recent work with prior studies that utilized now-obsolete
standards very difficult. This problem is exacerbated by the fact that the vast majority (>90%) of archived
records do not include the original geochronological information needed to update the age models and
allow apples-to-apples comparison [cf., Renne et al., 2009]. Recently, the lack of a mechanism for tracking
changes in chronologies, and the lack of data standards in chronological data were recognized as ”challenges
to high-impact, interdisciplinary science” [Noren et al., 2013].

1.1 The need for geochronology informatics
This problem is well-suited for an informatics solution. Age estimates for natural archives are dynamic, and
would benefit from automation. Imagine a new study that updates our understanding of the age and geo-
chemistry of a widespread ash layer. These changes would influence the geochronologies of other records.
For some, the age of the tephra shifts slightly. For others, tephras whose geochemistry did not match any
potential records, now do. The updates to these chronologies may change what had previously appeared to
be an asynchronous transition in a region, to a synchronous one. These changes would propagate to dif-
ferent records dependent on this chronological marker, perhaps fundamentally altering previous scientific
conclusions. Such work would take many years with the current cyberinfrastructure, but would be feasible
once integrated data structures and adapted software are developed.

Such a framework is beyond the scope of this proposal; although it’s in line with many of the goals
of the EarthCube initiative2. This proposal will leverage EarthCube activities, building upon advances in
data standards and infrastructure intended to make geoscientific data more broadly useful for 21st century
applications. Here we propose to develop and distribute GeoChronR, a one-stop shop to create, analyze,

1http://www.earth-time.org/about.html
2http://www.nsf.gov/geo/earthcube/
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Figure 1: Example of an age-depth model
that corresponds to use case 1 (up-
per panel). The blue shapes illustrate
the unique, often multi-modal, probabil-
ity distributions of each of the calibrated
14C ages in the upper-most part of the core.
Modern age-modelling algorithms typically
account for this by deriving an ensem-
ble of equally-plausible age models where
each ensemble member fits a model through
ages sampled from each date’s probability
distribution (red curves) [Blaauw, 2010].
These curves realistically diverge when
passing through multi-modal ages; however
these individual curves are rarely analyzed,
rather the median of the ensembles (black
line), which bisects bimodal distributions
(inset) is used for all analyses. This im-
pacts the interpretation of the record from
the site (lower panel), where the impact of
the trimodal peak, near 1900 AD, and the
bimodal peak (near 1400 AD), are easily
seen in the red ensemble curves, but not on
the median age model.

visualize and integrate time-uncertain records. GeoChronR is well-aligned with the EarthCube vision;
and the community-supported package may serve as a blueprint for grassroots development of analytical
tools. Here, we propose two complementary efforts: one aims to make critical geochronologic data more
accessible; the other will provide the tools to allow scientists to take full advantage of geochronologic
information to better quantify past changes in the Earth system.

1.2 Three use cases for geochronology informatics
The proposed tools have a variety of target users across the paleogeosciences, ranging from scientists de-
veloping new records of past ecological change, to climate scientists trying to evaluate how well a climate
model simulates a period of Earth’s past. Here we provide three example use cases, demonstrating the
breadth of the tools we will provide. Because of our background and research interests, the examples here,
and throughout the proposal, are primarily focused on paleoclimatology. Nevertheless, many of these con-
cepts and tools are directly applicable or easily extendable to other disciplines in the paleogeosciences.

1.2.1 Use case #1: Climate-proxy calibration with time-uncertain records
A paleolimnologist returns from the field. After measuring reflectance spectroscopy on the sediment cores
to estimate down-core changes in chlorophyll content (an indicator of primary productivity in many lakes),
and developing age control for the core with 17 14C dates, two tephra layers, and a 210Pb sequence near the
surface, she would like to perform several tasks:

• create an age model to estimate ages and their uncertainties throughout the core (e.g., Fig. 1);
• visualize the reflectance data, along with a sense of how chronological uncertainties may affect indi-

vidual wiggles;
• compare her series to that from a nearby lake. Her initial estimate of Pearson’s correlation coefficient

(ρ̂ = 0.43) looks relatively high, but how much does this depend on chronological uncertainties in
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Figure 2: Illustration of the distortion of
coherent signals due to layer miscount-
ing. (a) Five harmonic signals; (b) the
same signals, sampled with a 5% chance
of miscounting layers (missing years are
shown in white); (c) the records as-
sembled from (b) when assuming (erro-
neously) that 1 layer corresponds to 1
year. Note the loss of coherency between
interannual signals from (a) to (c), and
how strongly it affects the composite of
those records (gray line). GeoChronR
would enable to quantify the impact of
such errors under plausible scenarios
for the miscounting rate [from Comboul
et al., in prep]

both records? She would like to quantify this uncertainty;
• calibrate her reflectance ratios to temperature from a nearby weather station via linear regression. The

meteorological data are absolutely dated, her data are not. How much does this affect the range of
regression parameters α and β?

• Perform spectral analysis and assess the significance of spectral peaks against an age-perturbed back-
ground. Although codes to perform optimal spectral analysis [Thomson, 1982] exist in R, Matlab and
Python, no existing package allows to assess the effect of chronological uncertainties on such spectra.

An ensemble approach to age model development and record analysis, which is the core of GeoChronR,
would enable her to simply perform all five tasks. It would also provide confidence intervals for ρ, α and β
that quantify the effect of age model uncertainty.

1.2.2 Use case #2: Multiproxy reconstruction of tropical Pacific climate
In recent years, paleoclimatologists have shifted their emphasis from the analysis of single proxy records to
large-scale syntheses involving many proxy types from all over the globe [e.g. Kaufman et al., 2009; Shakun
et al., 2012; PAGES2K Consortium, 2013; Marcott et al., 2013; Tingley and Huybers, 2013]. To do so, one
must grapple with chronological uncertainties that are highly heterogeneous in nature: some records are
layer-counted, others dated via radiometric tie-points; all have disparate resolutions.

One important application is the reconstruction of past changes in tropical Pacific sea-surface temper-
ature (SST). The equatorial Pacific, in particular, is home to the El Niño-Southern Oscillation (ENSO),
orchestrating climate variability around the Pacific rim and tjroughout the global Tropics. Since there is ev-
idence that the instrumental record is too short to adequately inform our knowledge of ENSO [Wittenberg,
2009], paleoclimatologists have sought to reconstruct its behavior from high-resolution proxy archives.

Recently, Emile-Geay et al. [2013a,b] used a network of 57 such proxies to reconstruct SST in the
central equatorial Pacific (NINO3.4 region, [5◦N–5◦S; 170◦W–120◦W]) along with measures of uncertainty,
exploring the results’ dependence on the choice of proxy predictors, methodology, and intrumental target.
Chronological errors are a key source of uncertainty that was not formally explored by Emile-Geay et al.
[2013a,b]. How much would interannual oscillations (like ENSO) be affected by age offsets of just a few
years between proxy predictors of very diverse types? How much would this propagate to estimates of low-
frequency variability? Fig. 2 illustrates this concept. A proper framework to quantify the impact of such
errors on ENSO reconstructions has heretofore been lacking, and would be enabled by GeoChronR.
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1.2.3 Use case #3: Abrupt climate change and model-data intercomparison
The most recent preindustrial example of hemispheric-scale abrupt climate change occurred about 8,200
years ago [Alley et al., 1997; Morrill et al., 2013a]. Intervals of abrupt climate change are particularly rele-
vant phenomena to investigate, both for advancing theoretical understanding of the Earth system’s capacity
for extreme change, and for testing the climate models used for simulating future climate.

A paleoclimatologist has assembled a database of temperature and moisture records that span this in-
terval, and is hoping to use these records to gain insight into the climate dynamics associated with the
global-scale patterns in the database. The database includes a wide variety of archives with substantial
differences in the types and quality of age-control; ranging from layer-counted ice cores with near-annual
precision, to sediment sequences constrained by a few uncalibrated 14C ages. The predominance of evi-
dence suggests that this abrupt event was associated with extreme freshwater forcing in the North Atlantic
[Barber et al., 1999; LeGrande et al., 2006; Wiersma and Renssen, 2006; Carlson et al., 2009; Hoffman
et al., 2012], however the underlying climate dynamics explaining the global-scale pattern of changes are
not fully understood. The scientist would like to use these data to test between competing hypotheses: Were
the climatic changes observed throughout the world primarily carried by atmospheric, or oceanic telecon-
nections, or some combination of the two? She’d like to test this by examining spatial patterns of the timing
of onset and termination, as well as the duration of the event. Far distant sites, where abrupt changes start
and end synchronously with records from the North Atlantic, were most likely forced by atmospheric tele-
connections [Liu et al., 2013; Morrill, 2013], whereas those whose response lags by several years or decades
may be better explained by associated changes in ocean circulation [e.g., Cremer et al., 2007; Ljung et al.,
2008]. The paleoclimatologist would like to:

• develop appropriate ensemble age-models for each record, using the most recent radiocarbon calibra-
tion curve and state-of-the-art age modelling techniques;

• rigorously and objectively identify the timing of onset, duration and termination of abrupt changes
within range of the 8.2 ka event for each of 1000 equally-likely timeseries derived for each record;

• map the time-uncertain probability distribution for onset, duration and termination, for both tempera-
ture and precipitation;

• compare these results with climate model simulations to investigate the underlying dynamics.

We propose to make this effort possible by recovering and standardly formatting datasets relevant to
this interval that will integrate easily with GeoChronR: a package of tools that allow robust age-model
development, changepoint analysis of time-uncertain ensembles, and intuitive visualization routines.

2 Background
2.1 Age-Depth Modeling

The majority of archives used in the paleogeosciences are not annually-distinct. Consequently, to estimate
the deposition (formation) time of different sections of a sequence, researchers directly estimate the ages
of a small number of samples through the sequence (e.g., Fig. 1). These are often radiometric estimates,
such as 14C, which is common for lake or marine sediment records, or U-series dating in speleothem or
coral records. Often, chronostratigraphic markers, such as ash layers deposited after volcanic eruptions of
known ages, or other distinct changes or events in a record which are tied to age in other records. These age
estimates provide a general overview of how age changes as a function of depth or distance, but considerable
uncertainty remains about how to estimate ages for samples between the directly estimated layers.

Generally speaking, the paleogeoscience community has gradually shifted from simpler to more com-
plex approaches to this problem. Simple solutions, such as fitting a least-squares regression line through
the ages, or linearly-interpolating from age-to-age have been long used [cf., Bennett, 1994], and remain
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extremely common; a literature survey for 2008 showed the majority of studies used one of these two types
of models [Blaauw, 2010]. Each of these approaches has its pros and cons. The linear regression approach
treats errors very conservatively, but does not allow for changes in sedimentation or accumulation rate, and
cannot take full advantage of well-dated layers. Piecewise linear interpolation may be the most conservative
way to estimate ages between two control points, but implies abrupt changes in sedimentation rate at the age
points, and it is difficult to estimate uncertainty in the model – doing so with ensemble methods suggests
that the mid-points between ages have the least uncertainty, which is counterintuitive.

To address these issues, techniques that model slow changes in accumulation rate but that curve to fit
through age control points are being adopted. In these models, polynomials or splines were fit to the age
control points. These models have the opposite implications on the timing of sedimentation rate changes,
spreading them over the gaps between points while minimizing changes at the control points. It remained
unclear, however, how to estimate uncertainty for these models. To this end, algorithms were developed to
estimate uncertainty for spline-based models. Heegaard et al. [2005] published a mixed-effect regression
model that estimates uncertainty in the spline fit by combining the uncertainties originating from the analysis
of each dated layer as well as the variability between dated layers. Thus, records with more variability
in sedimentation rates resulted in broader error bars than did monotonic records. Blaauw [2010] took a
different approach, calculating an ensemble of age model splines by iteratively sampling from the full error
distribution of each age, then fitting a spline through each age. This allowed for realistic examination of
how the irregular error structure of calibrated radiocarbon ages influenced age models (Fig. 1).

Most recently, Bayesian approaches have been employed to age-model development [Blaauw and Chris-
ten, 2005; Ramsey, 2009; Blaauw and Christen, 2011]. These algorithms are able to incorporate a more
realistic understanding of how geologic sequences accumulate. To date, this has been done via statisti-
cal estimates of probability distribution and autocorrelation structure of accumulation rates [Ramsey, 2009;
Blaauw and Christen, 2011; Ault, 2011; Comboul et al., in prep]. Future work may improve on this approach
by including biogeochemical models that simulate these processes.

2.2 Time-uncertain analysis
Despite the progress made in quantifying uncertainty in ages and in age models, few studies have for-
mally evaluated how chronological uncertainty may have affected their results. For instance, whereas the
algorithms presented by Heegaard et al. [2005] and Blaauw [2010] have been broadly used in the paleolim-
nology community, the overwhelming majority of these studies calculate the single best-estimate model
(often a median or mean), use this model to put measured paleoclimatic or paleoenvironmental data on a
timescale, and then proceed to analyze the record with little or no reference to the age modeling exercise
[e.g. McKay et al., 2008; McKay and Kaufman, 2009, and many others]. Typically, discussions of the impact
of chronological uncertainties remain qualitative.

Thankfully, this paradigm is beginning to change. In recent years a handful of studies have taken ad-
vantage of approaches that generate ensembles of age models to evaluate how the results of their analyses
and conclusions vary given differences between ensemble members [Haam and Huybers, 2010; Rhines and
Huybers, 2011; Anchukaitis and Tierney, 2012; Shakun et al., 2012; Marcott et al., 2013; Tierney et al.,
2013]. By using each ensemble age model to create a time-uncertain ensemble records, and then carrying
that ensemble through the analysis, the precise impact of age uncertainty can be formally evaluated. This
approach, of course, does not address all aspects of uncertainty, but it does offer the broad potential to
ascertain which results are robust to chronological uncertainty, and which are not.

Despite its potential to substantially improve uncertainty quantification for the paleogeosciences, this
framework is not widely utilized. The majority of studies using this approach have been regional [An-
chukaitis and Tierney, 2012; Tierney et al., 2013] or global-scale [Shakun et al., 2012; Marcott et al., 2013]
syntheses, or reanalyses of well-known datasets [Haam and Huybers, 2010; Rhines and Huybers, 2011]
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rather than primary publications of new records. There are likely several reasons for the lack of adoption of
these techniques:

• The necessary geochronological data are not publicly available for the vast majority of records. Even
when they are available, the data are archived in diverse and unstructured data formats. Together, this
makes what should be a simple process of aggregating and preparing data for analysis prohibitively
time-consuming;

• Few tools for ensemble analysis are available, and those that are require a degree of comfort with
coding languages and scientific programming that is rare among paleogeoscientists;

• There is a disconnect between age-model development and time-uncertain analysis. Published ap-
proaches have utilized either simplified age-modeling approaches [Haam and Huybers, 2010], or
specialized approaches not used elsewhere in the community [Shakun et al., 2012; Anchukaitis and
Tierney, 2012; Marcott et al., 2013; Tierney et al., 2013]. Currently, extracting the relevant data
from commonly-used age-modelling algorithms, creating time-uncertain ensembles, then reformat-
ting those data for analysis in available tools is exceedingly technical;

• Finally, the proliferation of age-modelling approaches and analytical techniques has not been accom-
panied by a thorough intercomparison of the underlying theory, assumptions and biases associated
with each approach. Consequently, it is difficult for most users to make informed decisions about
how to model age and age-uncertainty for their records, and how their choices might influence their
analytical results.

We will lower the barriers to broader adoption of these emerging methods by recovering, formatting
and publicly archiving geochronological data, and by developing an easily-accessible, open-source software
package of industry-standard and cutting-edge tools that provides users with a one-stop shop to create,
analyze, and visualize time-uncertain data.

3 Recovering and formatting geochronological data for broad use
The primary focus of this proposal is to develop a set of software tools that will make emerging concepts
in time-uncertain data analysis more broadly accessible. Nonetheless, sofware design is inevitably predi-
cated on a consideration of data structures. The lack of a standard paleoclimate database archiving primary
chronological information is therefore the first hurdle to overcome. To begin to address this issue, we will
collaborate with the National Oceanic and Atmospheric Administration’s World Data Center for Paleoclima-
tology3 (WDC-Paleo, see letter of collaboration) to collect, aggregate and standardly format a broadly useful
dataset. As of result of these efforts, we expect to have, for the first time, a Holocene terrestrial and ma-
rine dataset in a broadly useful format with fully-archived geochronologic data necessary for state-of-the-art
analyses.

3.1 Data format
At present there is no agreed-upon standard to publish, distribute and re-use paleogeoscientific data. This is
partially due to the wide diversity of data types. To accomodate this diversity while maintaining a structured
and searchable format, we will adopt the flexible approach proposed by Emile-Geay and Eshleman [2013].
Here, each record is described by a metadata file, written using the eXtensible Markup Language (XML),
that describes all of the relevant metadata fields, and also points to text files which contain the tabular data
associated with each record, indexed by depth (Fig. 3). There are two basic types of tabular data, sam-
ple data (e.g., physical, biological or chemical measurements used to infer past environmental variability)

3http://www.ncdc.noaa.gov/paleo/paleo.html
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<paleoarchive>
 <site_meta>
  <sitename>Hallet Lake</sitename>
  <lat>61.5</lat>
  <lon>-146.2</lon>
  <elev>1128</elev>
  <class>Lake</class>
  <reference>McKay et al. 2008</reference>
  <url>ftp://ftp.ncdc.noaa.gov/pub/data/paleo/p
  <climate_interp>JJA temp, glacier</climate_interp>
 </site_meta>
 <sample_data>
  <sample>
   <name>BSi</sample_name>
   <col_meas>age,BSi</col_meas>
   <col_units>yr BP, mg g-1</col_units>
   <data_file>sample.BSi.txt</data_file>
  </sample>
  <time_uncertain>
   <name>BSi</sample_name>
   <age_model_ensemble>HT01</age_model_ensemble>
   <col_meas>age,BSi ensemble member (1-1000)</col_meas>
   <col_units>yr BP, mg g-1</col_units>
   <data_file>time_uncertain.BSi.txt</data_file>
  </time_uncertain>
 <sample_data>
 <chron_data>
  <chron_table>
   <name>HT01</sample_name>
   <col_meas>lab ID,top depth,bottom 
depth,material,14C_age,1-sigma error</col_meas>
   <col_units>none,cm,cm,none,yr 14C,yr</col_units>
   <data_file>chron_table.HT01.txt</data_file>
  </chron_table>
  <age_model>
   <name>HT01</sample_name>

xml metadata

geochronologic data

sample data

Yr (BP)  BSi (mg/g) 
-55          15.6 
-53          15.5 
-52          13.5 
-50          10.1 
-48           8.5 
-46           8.4 
-44           8.7 
-42           8.7 
-41           8.6 
-39           8.2 
-37           8.6 
-35           7.8 
-33           7.4 

measured variable
Year B01 B02 B03 B04 B05 B06 B07 B08 B09 B10 
1990 6.9 7.2 8.1 6.4 7.8 7.3 9.2 9.8 9.0 7.3 
1980 8.0 6.7 7.4 6.7 5.3 8.2 7.6 9.1 7.4 5.1 
1970 6.8 8.2 7.0 7.7 5.6 7.0 7.5 5.1 7.2 6.6 
1960 7.3 6.4 6.0 8.1 6.5 6.9 7.5 8.1 5.0 6.2 
1950 6.5 6.9 7.0 7.2 7.8 7.8 6.8 6.4 8.4 7.9 
1940 7.7 8.6 4.8 7.9 7.7 7.2 7.4 5.7 8.0 6.7 
1930 6.4 6.5 6.1 7.3 7.5 6.5 7.0 6.4 5.9 8.4 
1920 7.4 6.8 6.6 8.5 8.0 5.8 7.7 6.5 4.5 6.5 
1910 7.7 7.7 7.3 8.5 6.8 7.7 7.6 7.3 8.7 7.6 
1900 6.9 7.2 7.3 6.4 7.4 7.8 5.6 6.8 7.1 7.5 
1890 6.1 7.5 8.3 7.0 6.9 7.2 6.5 5.6 7.9 7.4 
1880 7.2 6.6 8.7 7.6 7.4 7.1 5.8 6.7 7.6 6.0 
1870 8.1 6.8 7.4 8.3 6.8 6.9 7.1 5.1 7.4 7.1 

time-uncertain data matrix

Lab_ID Depth 14Cage ±
29497  10    190   15
29498  10    120   15
29499  81.5  810   20
33138  135   1465  25
29500  177   1975  15
31584  177   1990  20
29501  236   2480  15
33139  299   3395  25
33140  329   3485  45
31585  363   4360  30
33141  435   6875  15

age-depth table
Depth Age01 Age02 Age03 Age04 Age05 Age06 Age07 
0    -56.5 -52.2 -50.6 -52.2 -56.4 -45.4 -50.3 
1    -46.3 -46.5 -42.2 -40.8 -38.5 -44.9 -46.7 
2    -32.6 -36.4 -30.1 -33.1 -32.0 -32.2 -29.8
3    -24.9 -21.6 -26.1 -20.7 -18.3 -18.3 -20.0 
4    -13.4 -6.1  -12.3 -5.3  -9.9  -18.2 -13.9 
5    -1.4  -4.2  -2.7  3.1   -3.5  -7.4  -0.5  
6    9.0   3.8   10.8  13.8  5.7   7.9   10.0  
7    14.0  11.7  23.1  20.3  11.8  21.8  20.4  
8    29.7  26.1  26.2  26.7  28.5  39.0  31.0  
9    38.6  40.5  42.2  40.0  38.5  48.5  42.4  
10   50.8  48.4  49.1  50.9  47.7  51.9  49.1  
11   61.5  59.0  62.7  62.0  61.6  60.8  60.5  
12   64.8  70.8  71.8  71.1  68.8  67.1  68.8  
13   80.6  83.1  75.9  76.9  80.8  73.4  81.7  

age-model ensemble

Figure 3: Schematic representation of the data structure to be used for GeoChronR.

and geochronological data. There are also two main types of chronological data: age-depth tables, de-
scribing best estimates of the age of dated layers, and the associated analytical data used to produce those
estimates (e.g., fraction of modern carbon, for 14C dates), and age-model data, which could either entail a
best-estimate and error bounds derived from an age-modelling technique, or a large matrix with an ensem-
ble of equally-plausible age-depth relationships, as in Fig. 3. These age-model ensembles will be used in
GeoChronR to create time-uncertain variable matrices as input for time-uncertain analyses which require
regularly-spaced data (see section 4.2 for details). Data recovered and formatted for this project will utilize
this data structure. This is an important component of this research, and will make the geochronology data
gathered for this proposal broadly useful for other applications as well. If and when the community agrees
upon a standard format, conversion between our format and a new format will be straightforward, as any
new standard must be self-describing and machine-readable.

3.2 A Holocene Climate Database
In collaboration with WDC-Paleo, we will update and combine existing compilations with well-formatted
geochronological data, and recover missing geochronological data for other relevant records in the WDC-
Paleo archive to create a well-structured database of Holocene climate data that will integrate smoothly
GeoChronR. WDC-Paleo has extensive marine and terrestrial data contributed by investigators funded
under the ESH Holocene initiative. Unfortunately measured age information is lacking, but will be recovered
as part of this proposal. We chose the Holocene, the current period of warm climate following the end of
the last Ice Age, about 11,500 years ago, as the target for this data recovery and formatting project for two
reasons:

1. To move towards the long-term goal of expanding our understanding of Holocene and especially late
Holocene climate reconstructions. Reconstructing spatial patterns in climate variability during the
past several thousand years is an important component of improving our understanding of long-term
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climate dynamics. This in turn informs estimates of how anthropogenic climate forcing may impact
the climate system on these timescales. Our knowledge of the climate of the past two millennia is
primarily derived from annually-banded paleoclimate archives; especially tree-ring records. Tree-ring
records have several limitations however, primarily in that they rarely extend more than 1,000 years,
and they typically can’t capture the full range of low-frequency climate variability [Cook et al., 1995].
Marine and lacustrine sediments, speleothems and ice cores are well-suited to both longer records, and
for recording low-frequency variability, but are difficult to integrate with tree-ring and other annually-
resolved records, largely due to the time-uncertainty associated with radiometrically-dated archives
[cf., Anchukaitis and Tierney, 2012]. As detailed in use case #2, a readily usable database of Holocene
paleoclimate records [Emile-Geay et al., 2013a] will allow for a rigorous investigation of how time-
uncertainty may impact a climate reconstruction of NINO3.4 SST for the past millennium.

2. To improve our knowledge of abrupt climate change. Use case #3 details how a well-structured
database that includes all of the relevant geochronological data could be combined with GeoChronR
to evaluate the spatial patterns of the timing of the 8.2 ka event in a probabilistic sense. Such an
analysis would improve our theoretical understanding of how the Earth system can respond to abrupt
climate change, and provide richer proxy benchmarks for data-model comparsion [Morrill et al.,
2013b]

We will begin building this Holocene Climate Database by reformatting and, when necessary, recov-
ering the geochronologic data from recent syntheses [Emile-Geay et al., 2013a,b; Marcott et al., 2013;
Morrill et al., 2013a]. These syntheses are excellent starting points for our data collection and formatting
efforts since they are of broad interest, relevant to scientific questions described above, and in many cases,
have already aggregated the original geochonological data. Subsequently, we will work with WDC-Paleo
to expand the database, targeting Holocene records that are particularly relevant for integration with late
Holocene climate reconstruction, and for better understanding the spatiotemporal pattern of abrupt change.

3.3 Distributing these data
By the initial release of GeoChronR, at a minimum, the uniformly formatted Holocene Climate Database
will contain all the records from [Emile-Geay et al., 2013a,b; Marcott et al., 2013; Morrill et al., 2013a],
including all of the relevant geochronological data, and will be available as a standardized package at WDC-
NOAA that will interact smoothly with GeoChronR. In addition, should our data aggregation and format-
ting efforts proceed as planned, dozens of additional records will also be included. The data contribution is
critical, because the potential of examining these data with the time-uncertain analysis tools in GeoChronR,
and for comparing new records with data in these archives will be the primary motivation for community
adoption of GeoChronR. Ideally, these data will serve as a seed that motivates the formatting and inclu-
sion of other records by users of GeoChronR, and spark community-wide discussion on data/metadata
standards.

4 GeoChronR : an integrated, open-source and community-supported solution
We will develop a package in the R environment4 that will link new and emerging age-modeling algorithms
with analytical tools that allow users to analyze time-uncertain ensembles with several industry-standard
and cutting-edge tools, and then effectively visualize those results.

A key aim of this effort is to increase community participation in a powerful new approach to understand-
ing how geochronological uncertainty influences the associated records. Relatively few paleogeoscientists
program in R, though it has been widely used for age-modeling algorithms [Heegaard et al., 2005; Blaauw,
2010; Blaauw and Christen, 2011] and paleogeoscientists have proven themselves proficient at utilizing

4http://www.r-project.org
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well-designed packages. Furthermore, R is open-source, freely-available, and is supported by an active
community that contributes to packages. We will embrace this spirit and will encourage users comfortable
in R to contribute new components to the package, especially community-specific analyses that can be sim-
ply expanded to analyze time-uncertain records. Indeed, many of the common analytical tools that we will
develop for GeoChronR are modified versions of packages already contributed by the R community. We
will also strive to accomodate users who prefer to work in other environments, working with the community
to develop input and output routines that facilitate the interface between ExcelTM, Matlab or Python.

4.1 Age Modeling tools
4.1.1 Tie-point age models

The CLassical Age Modeling (CLAM) algorithm [Blaauw, 2010], is designed to improve spline-based age
modeling techniques by randomly sampling from the full age distribution of each age control point before
fitting a spline through comtrol points. Critically, CLAM calibrates each radiocarbon age and draws 14C
age estimates from each date’s unique error distribution. CLAM can optionally exclude ensemble members
with age reversals, enforcing the constraint of superposition, as well as handle downcore variability in 14C
reservoir corrections for marine records. CLAM is written in R, is ensemble-based, and is widely used,
making it ideal for GeoChronR .

The Bayesian ACcumulatiON (BACON) algorithm [Blaauw and Christen, 2011] was designed as a
Bayesian alternative to CLAM. Rather than utilizing purely statistical approaches to filling the gaps be-
tween ages, BACON is designed around the philosophy of taking advantage of prior knowledge about the
distribution and autocorrelation structure of sedimentation rates in a sequence. The algorithm employs an
adaptive Markov Chain Monte Carlo algorithm that allows for Bayesian learning to update the sedimenta-
tion rate distribution. BACON is written in C++ and R, with an R interface. A subset of ensemble members
with high a posteriori probabilities can be extracted and used for ensemble analysis.

Ault [2011] developed an alternative method for utilizing prior knowledge about accumulation rate dis-
tribution to infer the ages of gaps between known ages. The age modeling component of Monte carlo
Age model Families for Interpretation and Analysis (MAFIA) was designed to model ages for speleothem
records, but is easily generalized to other archives. MAFIA simulates the intervals between dated layers as
a random walk process whose steps are drawn from a gamma or Poisson distribution that is characteristic
of the archive. Because age uncertainty is thought to be greatest at the mid-points between dated layers
[Huybers and Wunsch, 2004], MAFIA simulates ages in both increasing and decreasing directions from
each control point, stitching individual ensemble members together at the midpoints where uncertainty is
greatest. MAFIA is coded in MATLAB, and will be adapted to R for this project.

4.1.2 Layer-counted age models
Another major dating technique exploits the presence of distinct bands or periodic features (e.g. cycles in
geochemical measurements), whose count is equated with the number of years elapsed since the top sample
was collected. This category covers tree-rings, varved sediments, ice cores and annually-banded corals.
Dendrochronology is an extremely well-developed field, and cross-dating between many samples makes
tree-ring chronologies extremely robust [e.g. Douglass, 1941; Stokes and Smiley, 1996]. Uncertainty quan-
tification for the less time-certain archives (varved sediments, and annually-banded ice cores and corals), is
much less developed. Rhines and Huybers [2011, Appendix A] proposed a simple model for long ice-core
chronologies like that of GISP2 [Alley et al., 1997]. Uncertainties are modeled as a discrete random walk,
but in order to obtain relative uncertainties consistent with published estimates of 2%, they had to specify
an unrealistically high probability for the miscounting of layers.

Recently, Comboul et al. [in prep] proposed BAM (Banded Age Model), a probabilistic model of age
errors in layer-counted chronologies. The model allows a flexible parametric representation of such errors
(either as Poisson or Bernoulli processes), and separately considers the possibility of double-counting or
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missing a band. The model is parameterized in terms of the error rates associated with each event, which
are more intuitive parameters to paleogeoscientists. Although such rates can be difficult to estimate from
the data alone, field scientists typically have expert knowledge that can be tapped to refine these error
estimates. Additionally, an optimization principle may be used to identify a more likely age model when a
high-frequency common signal can be used as a clock. BAM is coded in MATLAB, and will be adapted to
R for this project.

4.1.3 Unifying the mathematical description of age errors
As is now becoming apparent, many approaches have been proposed to generate ensembles of chronologies
based on tie-point or layer-counted age models. Some of these approaches make the underlying stochastic
model explicit, others do not. Few have made their code publicly available. One task of this project will
be to unify the mathematical description of age models, so that the merits of competing approaches can be
more readily appraised. We will also perform comparisons on synthetic benchmarks, so that the advantages
and disadvanages of each model and method can be made more transparent. The results of this work will
be summarized in the tutorial for GeoChronR as well as in the interactive help, to help end-users decide
which age modelling algorithms and methodological choices are most appropriate for their problem.

4.2 Ensemble Analysis and Visualization
After the development of an ensemble of age models with one of the age modeling algorithms described
above, the next step is to create a time-uncertain ensemble of a record of interest. This will be handled
simply in GeoChronR, by using each age-model ensemble as a simple look-up table to convert depth to
age using each ensemble model. This results in a matrix of ages (an “age-model ensemble”) that correspond
to measured layers in the record. For some analyses, irregularly-spaced data may be analyzed. Many,
however, require regularly-spaced data. For these, each age-value pair will be used to resample the data, by
averaging the data over contiguous intervals, and where necessary, interpolating records to create a matrix
with uniformly sampled age steps (the “time-uncertain data matrix”).

Visualization is an important component: the analysis of time-uncertain ensembles introduces an addi-
tional dimension to the results, meaning that traditional methods for visualizing many analyses will need to
be enhanced to show the distribution of results across age-ensemble members. For each analysis included
in the toolbox, we will develop one or more methods of visualizing the results and their uncertainty.

4.2.1 Time-series analysis
Estimates of correlation and covariance are widely used in the paleogeosciences to evaluate the extent to
which two time series are related, and to thus provide insight into the processes that may me driving covari-
ability (or the lack thereof). Such analyses allow for an estimate of uncertainty, but the impact of chrono-
logical uncertainty cannot be easily assessed. [Haam and Huybers, 2010] developed a procedure to test the
statistical likelihood that two timeseries are significantly covariable, given uncertainty in the chronologies.
The authors show that evaluating the likelihood of significant covariance using a Monte Carlo based test is
consistent with analytical results derived from the theory of order statistics. The authors use a sophisticated
approach to evaluate the likelihood of the few ensemble members with the highest covariance, while using
a simplified age-modeling scheme. We propose an alternative approach, where the ensembles are extracted
from one of the approaches described above, but where the covariance of correlation statistics are calculated
across the time-uncertain ensembles of two series (e.g., Fig. 4). The distribution of p-values, indicative
of significance, are also calculated. This gives users an appropriate sense of the influence of chronological
uncertainty on the statistical relationship between two records.

Increasingly, radiometrically-dated paleoclimate records are being calibrated against instrumental cli-
mate data to quantify past variability in temperature [e.g., McKay et al., 2008; Saunders et al., 2013],
precipitation [e.g., Trachsel et al., 2010; Elbert et al., 2012; von Gunten et al., 2012] or discharge [e.g.,
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Figure 4: Example of age-
uncertain proxy calibration,
following use case 1. Here,
each age ensemble member
is used individually to put the
relativel chlorophyll abundance
data on a timescale. Next, each
ensemble member is regressed
against a nearby instrumental
record to develop a calibration
with summer temperature. The
impact of age uncertainty on
apparent chlorophyll abun-
dance data is illustrated by the
horizontal error bars on the
left panel, and the regression
lines resulting from each of 100
age-ensembles are shown in
red. To the right, the probabil-
ity distributions of ρ, β and α
characterize the impact of age
uncertainty on the calibration.

Kaufman et al., 2011] at a study location. Time-uncertainty in these records creates additional uncertainty
in the calibration to climate that is typically ignored, but that could be simply evaluated by performing
the calibration step (usually some form of regression), over an ensemble of time-uncertain predictors (Fig.
4). The calibration for each ensemble member will then be applied throughout the record to form a time-
uncertain ensemble of the quantitatively reconstructed climate parameter that encompasses the influence of
time uncertainty on the calibration procedure.

Traditionally, the influence of chronological uncertainty has been judged qualitatively, with the eye as
a primary tool. This sort of judgment is much more difficult for analyses in the spectral domain, where the
primary focus is to identify statistically-significant periodicities in a timeseries.

Thus, ensemble analysis in the frequency domain has the potential to be particularly enlightening. We
will develop algorithms to calculate and visualize ensemble spectra and evolutive spectra for both regularly-
spaced records using the multi-taper method [Thomson, 1982; Mann and Lees, 1996] as in [Comboul et al.,
in prep] (e.g., the bottom right panel in Fig. 5), and for irregularly-spaced records using the Lomb-Scargle
method [Schulz and Mudelsee, 2002; Mudelsee et al., 2009]. We will also adapt R packages for wavelet and
wavelet coherence analysis for ensemble analysis and visualization.

Many other types of time-series analysis methods can be adapted to apply to time-uncertain ensembles.
For example, trend analysis [Santer et al., 2000; PAGES2K Consortium, 2013], changepoint detection [Lund
et al., 2007; Reeves et al., 2007; Ruggieri and Lawrence, 2012], and regime-shift tests [Rodionov, 2004;
Morrill and Jacobsen, 2005] are widely used, and these will be developed for specific scientific questions as
needed. We aim to create an environment that is so useful that technically-adept users interested in a specific
analysis will contribute to a community-supported library of analysis functions.

4.2.2 Spatiotemporal data analysis
Recently, Anchukaitis and Tierney [2012] presented a new approach to isolate, and evaluate the uncertainty
of, shared regional patterns in time-uncertain data. Monte Carlo Empirical Orthogonal Function analy-
sis (MCEOF) employs the same philosophy as GeoChronR; calculating ensemble age models and time-
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Figure 5: Spatiotemporal uncertainty quantification on a pseudocoral network. (top) EOF loadings (circles) cor-
responding to the ENSO mode of an ensemble of age-perturbed pseudocoral records with miscounting probability
θ = 0.05. EOF loadings for error-free data are shown in light colors circled in white, while the median and 95%
quantile are shown by dark disks and black-circled disks, respectively. Contours depict the SST field associated with
the mode’s principal component PC (bottom left), whose power spectrum is shown on the bottom right. Results for the
time-uncertain ensemble are shown in blue: median (solid line), the 95% confidence interval (light-filled area) and
interquartile range [25%-75%] (dark-filled area). Results for the original (error-free) dataset are depicted by solid
red lines. Dashed red lines denote χ2 error estimates for the MTM spectrum. [from Comboul et al., in prep]

uncertain proxy records, then performing singular value decomposition on many equally-plausible matrices
of multiple records for a region. The resulting empirical orthogonal functions, and their projections onto the
time-uncertain records, yields maps of the EOF loadings, along with their uncertainties, and the correspond-
ing principle component time-series which extract primary modes of variability that are robust to chrono-
logical uncertainty, with variable uncertainty in time. Comboul et al. [in prep] have implemented a similar
analysis in MATLAB, with a visualization scheme inspired by that of Tierney et al. [2013, their Fig. 1c],
presented in Fig. 5. Additionally, the lower-right panel illustrates one strategy for the spectral analysis of
time-uncertain records. This technique will be applied in GeoChronR, leveraging other spatiotemporal
analysis techniques like independent component analysis [Comon, 1994]5 and multichannel SSA (M-SSA)
[Vautard et al., 1992].

One unique outcome of GeoChronR, which will synthesize different age model representations under
one unified informatic framework, is to enable the integration of time-uncertain records with a wide range
of age precisions and chronological types. This is critical to the climate field reconstruction (CFR), which
aims to reconstruct climate variability at high and low-frequencies from such heterogeneous datasets, and

5http://cran.r-project.org/web/packages/fastICA/index.html
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has yet to incorporate age uncertainties in its inference framework. The investigation of age uncertainties in
CFR is beyond the scope of this proposal, but this work is a necessary step in this direction.

4.3 Data-model intercomparison
As evoked in use case #3, a key motivation for studying Earth’s past is the ability to test predictive Earth
system models, by providing a completely independent set of observations that were not used for model
development or tuning [Schmidt, 2010]. However, data-model comparisons are fraught with many difficul-
ties. The first is that models and data do not speak the same language, so some form of translation must
take place: either the proxy data are converted into a dynamically-relevant variable (e.g. temperature, pre-
cipitation) by means of an inverse technique, or model output is mapped into proxy space via proxy system
models [Evans et al., revised]. The second, of course, is that this comparison must be done in the presence
of age errors.

There is no standard way to carry out such analyses; like all science problems, they must be tailored to
test specific hypotheses. A good paradigm for paleoclimate data-model intercomparison is the PMIP3 inia-
tive [Braconnot et al., 2012], which provides a standard test of numerical experiments that can be confronted
to paleoclimate benchmarks. For instance, the NINO3.4 reconstructions of Emile-Geay et al. [2013a,b] were
used by Ault et al. [accepted] to constrain model behavior in the spectral domain. Much more can be done on
this front [e.g. Emile-Geay, 2013], including explicitly recognizing time uncertainties in the proxy archives.
Using our age modeling tools (4.1), we will develop R code to formally test the hypothesis that simulated
behavior in perturbed experiments is compatible with time-uncertain proxy observations, and statistically
distinct from that of control simulations. Two case studies will demonstrate use on 1) transient simulations
of the last millennium (LM), as in Ault et al. [accepted], and 2) experiments targeting the 8.2 ka “event”6.

The first will explore the ability to distinguish spectral regimes in the presence of time uncertainties (a
continuum approach); the second will quantify how much age uncertainties limit the resolution of abrupt
climate changes, and hence how stringent a test they provide to climate models (an event-based approach).

4.4 Code development and publishing in R
GeoChronR will be developed as a package in R. The R programming ecosystem is a community-driven
open source development framework derived from the statistical programming language S. R is freely avail-
able under the GNU general public license (GPL), and has an active base of developers contributing enhance-
ments to R’s visualization, statistics, and machine learning capabilities. The capabilities of R are extended
through user-created packages, which enable specialized statistical techniques, visualization methods, re-
porting tools, data ingestion mechanisms, and more. The Comprehensive R Archive Network (CRAN) is an
open repository of these user-created packages, and presently contains 4638 contributions to the collection.
Code is typically written in R, but may also be written in Java, C, Fortran, or others. Because of the open
nature of R and CRAN, scientists, statisticians, and computer scientists are encouraged to contribute new
ideas, enhance existing packages, and add new algorithmic techniques. These qualities make it an ideal
language for the GeoChronR project.

The GeoChronR source code will be made publicly available under the GPL and source code will be
made publicly available for ongoing contributions by the scientific community. The GeoChronR package
will be distributed in CRAN according to common practices used by the R community for vetting and
validating user contributions.

R source code is currently the #26 most popular language on Github, an advanced code management
and version control system widely used for both open-source and proprietary software development projects.
Under guidance from consultant Ken Collier and ThoughtWorks, GeoChronR development will conform
to current best code management practices starting from the beginning of the project. As the project evolves,

6https://wiki.lsce.ipsl.fr/pmip3/doku.php/pmip3:design:8k2:index
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periodic assurance reviews will be scheduled to ensure that code management and version control practices
are effectively utilized and that the evolving project code base is well structured and easily navigable by
community members.

Most researchers and users of GeoChronR are expected to be working on single processor commodity
workstations (e.g., Windows, Linux, and OS X personal computers), making the approach highly scalable,
in terms of number of users. However, this raises concerns about computational performance in this project.
During the second and third years of the program, special attention will be given to boosting the performance
of these tools through parallelization and multi-threaded processing. Added attention will be given to data
storage and retrieval performance. ThoughtWorks’ deep expertise in computational parallelization and high
performance computing will be utilized to ensure that performance is acceptable, even on commodity hard-
ware platforms.

Our software sustainability plan for GeoChronR is based on two principles. The first is the use of sound
software engineering practices to create open software based on existing community-supported, open, and
proven software. The second is an outreach plan to create a community of active users who understand
and use the software for their daily work, and who will want to see the software grow. GeoChronR will
be based partially on community-supported R packages, all of which are open source projects with a large
developer community. We will coordinate our extensions with that software base and release them to the
broader community.

We will set up a user forum for GeoChronR, and encourage users to register with their geoscience
disciplines and scientific applications. This will also be a primary format for user support and updates. We
will also track publications that utilize GeoChronR, and encourage and monitor downloads from CRAN
mirrors which track usage data. These data will be the major metrics of utility and impact in the community.

5 Broader Impact
This project is intended to enable community-supported development of tools and contribution of well-
formatted data, which this proposal only nucleates. This is intended to lower the barriers to broader use
of emerging time-uncertain analysis methods in the paleogeoscience. A key challenge lies in helping the
community overcome the learning curve of adopting new software. The R platform is becoming increas-
ingly common in the community, and many paleogeoscientists have adopted the platform to take advantage
of broadly useful applications on time-uncertain records. Indeed, the paper documenting the R package
CLAM [Blaauw, 2010] has been cited more than 150 times since its release three years ago. To help over-
come this learning curve, promote broad participation, and receive feedback on GeoChronR, we will host
summer workshops for early-career scientists. In the 2nd and 3rd years of the program, we will hold an open
application process to select 16 young scientists to travel to the campus of Northern Arizona University.
These two-day workshops will train users in the basics of R and GeoChronR, encourage them to apply
GeoChronR to their research projects, and when appropriate, work with participants to implement new
time-uncertain analyses that will then become part of the larger toolkit. We will take advantage of these
workshops to improve the usability of GeoChronR and develop well-articulated documentation to guide
users through the package. Furthermore, to increase community participation in the project, we will broadly
promote the use of GeoChronR at conferences and through electronic media.

A primary goal of this proposal is to recover the missing geochronologic data for many publicly archived
records. For many records, differences in geochronologic methodology limits the applicability of datasets
from past decades that contain valuable information to modern scientific questions. This problem will only
grow worse over time, so our efforts at recovering and archiving the relevant geochronologic data will
provide added value to the community, and allow for greater societal impact of previous work in the field.

This proposal will fund two early-career scientists (McKay and Emile-Geay), a graduate student at USC
and two summer interns in the first and second years of the project. Through these efforts, McKay, Collier
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and the student interns at NAU will contribute to the development of a geoinformatics certificate program at
NAU, part of a larger environmental informatics initiative at the school.

6 Work plan
Acronyms: KC, Ken Collier; JEG, Julien Emile-Geay; NM, Nicholas McKay; GS, USC graduate student;
SI, NAU or WDC-Paleo student interns; WDC, WDC-Paleo (see letter of collaboration).

Year 1

• Conversion of existing Holocene databases to common, universal format and expansion with geochrono-
logical data [SI, NM, WDC]

• ThoughtWorks consulting: code management, version control, and software craftsmanship [NM, KC]
• Integration of age-modelling algorithms coded in R (CLAM, BACON) into GeoChronR [NM]
• Adapt age-modelling algorithms (MAFIA, BAM) from MATLAB to R [NM, JEG, GS]
• ThoughtWorks consulting: assurance of high quality design practices [NM, KC]
• Begin developing time-uncertain analysis and visualization tools, when possible, adapting from community-

supported R packages [NM]
• Begin unifying the mathematical description of age-modeling algorithms [GS, JEG]
• Relay preliminary results via EarthCube RCNs and Climate Informatics [NM, JEG] (Sep 2014)

Year 2

• Expansion of Holocene climate database with new and existing records [SI, NM, WDC]
• ThoughtWorks consulting: parallelization and high performance coding on single node commodity

workstation [NM, KC]
• Develop algorithms and visualization for age-uncertain model-data intercomparison [JEG, GS]
• Finalize beta versions of analytical tools and visualizations tools [NM]
• First GeoChronR workshop at Northern Arizona University (August 2015), and PI coordination

meeting establishing priorities for remainder of project [NM, JEG, GS]
• Limited distribution of beta version of GeoChronR, improving and expanding upon feedback
• Begin applying GeoChronR to time-uncertain climate index reconstruction in the tropical Pacific

(use case 2) and analysis of the onset, duration and termination of the 8.2 ka event (use case 3) [NM,
JEG, GS]

• Present results and use cases from workshop and beta distribution via EarthCube RCNs, Climate
Informatics (Sep 2015), AGU (Dec 2015)

Year 3

• ThoughtWorks consulting: R ecosystem development, conformance to open-source community stan-
dards, and review of common data structures and data science practices [NM, KC]

• Release first public version of GeoChronR via CRAN and WDC-Paleo
• Recruit new users via EarthCube RCNs, AGU, GSA, PAGES networks [NM, JEG, GS]
• Second GeoChronR workshop at Northern Arizona University (August 2016) [NM, JEG, GS]
• Present results and use cases from workshop and initial release via Climate Informatics (Sep 2016),

AGU (Dec 2016)
• Continuously incorporate feedback and encourage community contributions [NM, JEG]
• Publish results of GeoChronR, unifying the mathematical description of age-modeling algorithms,

and new science made possible by GeoChronR (following use cases 2 and 3)
• Public webinar introductions to GeoChronR led by NM [Fall 2016] and JEG [Spring 2017]
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